Installation Guide For Hydraulic Retractable Thruster Models **SRHV240, SRHV320** ### **SLEIPNER MOTOR AS** P.O. Box 519 N-1612 Fredrikstad Norway www.sleipnergroup.com **DOCUMENT ID: 2933 REVISION: 9** **DATE: 2023** LANGUAGE: EN # **Contents** | Installation Manual | | |--|------| | Responsibility of the Installer | 3 | | General Installation Considerations and Precautions Guidelines | 3 | | Product Measurements | 4 | | Product Specifications | | | Positioning of the tunnel / thruster | 6 | | Tunnel Length | 7 | | Tunnel Installation in Sailboats | 8 | | Water Deflection | | | Tunnel Installation | | | Stern Tunnel Installation | | | Gear Leg & Motor Bracket Installation | 14 | | Propeller Installation | 15 | | Motor Installation | 16 | | Electrical Installation | 17 | | Product Lug Connection Configuration | 17 | | Electrical Reference Guide | | | Manual Main Switch Wiring Diagram 12V Thruster | 19 | | Automatic Main Switch Wiring Diagram 12V Thruster | 20 | | Control Panel Installation | 21 | | Pre-delivery Checklist | . 22 | | Service and Support | . 23 | | Product Spare Parts and Additional Resources | | | Warranty Statement | . 23 | Accidental activation of the retract mechanism can cause serious injury due to the high-pressure force used for closing the hatch. IF operating the hatch during any work/ maintenance around or inside the retract hatch, USE CAUTION. MC_0411 MC_0020 # Responsibility of the Installer MC_0038 The installer must read this document to ensure necessary familiarity with the product before installation. Instructions in this document cannot be guaranteed to comply with all international and national regulations. It is the responsibility of the installer to follow all applicable international and national regulations when installing Sleipner products. The recommendations given in this document are guidelines ONLY, and Sleipner strongly recommends that advice is obtained from a person familiar with the particular vessel and applicable regulations. This document contains general installation instructions intended to support experienced installers. If you are not skilled in this type of work, please contact professional installers for assistance. If required by local regulation, electrical work must be done by a licensed professional. Appropriate health and safety procedures must be followed during installation. Faulty installation of Sleipner products will render all warranties given by Sleipner Motor AS. Ensure appropriate access to Sleipner products during installation planning for service, inspection and component replacement. ### **General Installation Consideration and Precaution Guidelines** MC_0440 #### For retract thrusters - Stern mounted retract thrusters must not be installed to conflict with propulsion propellers or its water trail. (NB: consult a naval architect for an exact position.) - Paint inside the retract housing with anti-fouling. (NB: Do not paint the drive shaft.) #### For thruster systems MC 0425 - Do not install the thruster in a position where you need to cut a stiffener/ stringer/ support that may jeopardise the hull integrity without checking with the boat builder this can be done safely. - Paint the gear leg and propellers with anti-fouling. (NB: Do not paint the anodes, sealing, rubber fittings or propeller shafts) - · There is only room for a thin coat of primer and two layers of anti-fouling between the tunnel and the props. - · Never run the thruster out of water without load. Operated at no load, the motor will reach extremely high speed, damaging the system. #### If an original Sleipner hydraulic system is NOT installed, please ensure the following: MC 000 - Install an oil filter to keep the oil clean. - Fit an oil cooler to ensure that the maximum oil temperature is below 75°C. Recommended operation temperature of hydraulic oil is 40-60°C. - Hydraulic thrusters are supplied with hydraulic motors only. - The installed hydraulic system is the responsibility of the fitter/ installer and must be within the limitations outlined in this manual to ensure no damage is caused to the thruster. - · The hydraulic valve must have flow and pressure limits that are either set within or can be adjusted to the limits of the thrusters capability. - We strongly advise that a shock valve is fitted and set to 10% 15% above the chosen maximum pressure set in the valve. This will prevent the system from being damaged if the propellers are blocked for any reason. - Install a device to ensure the drive direction cannot be suddenly changed, as this can severely damage the gear leg. (NB: Use a electric control system or a valve that ensures minimum 1 second delay when changing drive direction.) When installing an S-Link™ system connect ONLY original Sleipner S-Link™ products or other authorized control equipment directly to the S-Link™ bus. Connecting non-authorized third-party equipment, it must always be connected through a Sleipner supplied interface product. Any attempt to directly control or connect into the S-Link™ control system without a designated and approved interface will render all warranties and responsibilities of all of the connected Sleipner products. If you are interfacing the S-Link™ bus by agreement with Sleipner through a designated Sleipner supplied interface, you are still required to install at least one original Sleipner control panel to enable efficient troubleshooting if necessary. | Measurement | | SRH | 240 | |-------------|-------------------------|-----|------| | code | Measurement description | mm | inch | | Н | Height | 390 | 15.4 | | L | Length | 688 | 27.1 | | +L | Additional Length | 42 | 1.7 | | W | Width | 481 | 18.9 | | ID | Internal Diameter | 250 | 9.80 | | WD | Water Depth | 250 | 9.80 | | RD | Retract Depth | 361 | 14.2 | | RW | Retract Width | 347 | 13.7 | | MW | Mould Width | 414 | 16.3 | | МН | Mould Height | 98 | 3.9 | | Measurement | | SRH | 320 | |-------------|-------------------------|-----|-------| | code | Measurement description | mm | inch | | н | Height | 455 | 17.9 | | L | Length | 843 | 33.2 | | W | Width | 580 | 22.83 | | ID | Internal Diameter | 300 | 11.8 | | WD | Water Depth | 300 | 11.8 | | RD | Retract Depth | 445 | 17.5 | | RW | Retract Width | 415 | 16.3 | | MW | Mould Width | 480 | 18.9 | | МН | Mould Height | 115 | 4.5 | # **Hull Specifications** Use sealants, adhesives or bonding material compatible with the materials of your vessels hull and Sleipner product. # **Product Specifications** MC_0169 | Product | Lubrication | Light Duty
Thrust is kg | Heavy Duty
Thrust is kg | Power Output
kW / Hp | Weight
kg / lbs | Maximum
Operation Time | |---------|-----------------------------------|----------------------------|----------------------------|--------------------------------|---------------------------|---------------------------| | SH240 | Sealed - Oil bath from tank EP-90 | 240 kg / 529 lbs | 220 kg / 440 lbs | 14.9 kW / 20 hp | 13.5 kg / 29.76 lbs | Continuous | | SH320 | Sealed - Oil bath from tank EP-90 | 320 kg / 705 lbs | 270 kg / 594 lbs | 17.16 kW / 23.3 hp | 17.16 kg / 37.83 lbs | | # Flow and Pressure Specifications MC_0169 | | | | 60 % | | 80 % | | 100 % | | |----------------|---------------|-----------|------|----------|------|----------|-------|-------------------| | Thruster model | Motor
type | | Flow | Pressure | Flow | Pressure | Flow | Pressure | | | U,G,P 8 | L/min-Bar | 19.1 | 217 | 21.4 | 275 | 21,4 | 275 ¹⁾ | | | U,G,F o | USG-PSI | 5.05 | 3147 | 5.65 | 3988 | 5.65 | 39881) | | | U.C. D.40 | L/min-Bar | 23.8 | 174 | 27.5 | 232 | 30 | 275 ²⁾ | | U,G,P 10 | 0,G,P 10 | USG-PSI | 6.29 | 2523 | 7.23 | 3364 | 7.93 | 39882) | | | II.C D 44 | L/min-Bar | 26.2 | 158 | 30.2 | 211 | 33,8 | 264 | | 611040 | U,G,P 11 | USG-PSI | 6.9 | 2291 | 8.0 | 3060 | 8.9 | 3828 | | SH240 | U.C. D.4.4 | L/min-Bar | 33.1 | 124 | 38.2 | 166 | 42.7 | 207 | | | U,G,P 14 | USG-PSI | 8.7 | 1798 | 10.1 | 2407 | 11.3 | 3002 | | | U.C.D.1. | L/min-Bar | 38.1 | 109 | 44.0 | 145 | 49.2 | 181 | | | U,G,P 16 | USG-PSI | 10.1 | 1581 | 11.6 | 2103 | 13.0 | 2625 | | | | L/min-Bar | 45.1 | 92 | 52.1 | 122 | 58.3 | 153 | | U,G,P 19 | USG-PSI | 11.9 | 1334 | 13.8 | 1769 | 15.4 | 2219 | | 1) Max. thrust: 182kg 2) Max. thrust: 228kg | | | | 60 % | | 80 % | | 100 % | | |----------------|---------------|-----------|-------|----------|-------|----------|-------|--------------------| | Thruster model | Motor
type | | Flow | Pressure | Flow | Pressure | Flow | Pressure | | | U,G,P 11 | L/min-Bar | 23.8 | 249 | 24.9 | 274 | 24.9 | 2741) | | | 0,6,7 11 | USG-PSI | 6.29 | 3611 | 6.58 | 3973 | 6.58 | 3973 ¹⁾ | | | U.G.P 14 | L/min-Bar | 30.1 | 196 | 34.7 | 261 | 35.6 | 2742) | | | 0,G,F 14 | USG-PSI | 7.95 | 2842 | 9.17 | 3785 | 9.41 | 3973 ²⁾ | | U,G,P 16 | II C D 16 | L/min-Bar | 34.6 | 171 | 39.9 | 229 | 43.7 | 2743) | | | 0,6,7 16 | USG-PSI | 9.14 | 2480 | 10.54 | 3321 | 11.55 | 3973 ³⁾ | | SH320 | BA 16 | L/min-Bar | 33.8 | 172 | 39.0 | 230 | 43.6 | 287 | | 30320 | DA 10 | USG-PSI | 8.93 | 2494 | 10.30 | 3335 | 11.52 | 4162 | | | U.G.P 19 | L/min-Bar | 41.0 | 144 | 47.3 | 193 | 52.9 | 241 | | | 0,G,F 19 | USG-PSI | 10.83 | 2088 | 12.50 | 2799 | 13.98 | 3495 | | | BA 19 | L/min-Bar | 40.1 | 145 | 46.3 | 194 | 51.8 | 242 | | BAI | DA 19 | USG-PSI | 10.59 | 2103 | 11.44 | 2813 | 13.69 | 3509 | | | 11 6 0 22 | L/min-Bar | 49.4 | 121 | 57 | 162 | 63.8 | 202 | | U,G,P 23 | USG-PSI | 13.05 | 1755 | 15.06 | 2349 | 16.86 | 2929 | | 1) Max. thrust: 211kg 2) Max. thrust: 269kg 3) Max. thrust: 307kg Follow the defined hose specifications to connect hydraulic hoses to the motor. | Motor type | Port A/B | Drain Port | |------------|----------------------|------------| | G16 | 22L, Metric DIN 2353 | 1/4" BSP | | G19 | 22L, Metric DIN 2353 | 1/4" BSP | | G23 | 22L, Metric DIN 2353 | 1/4" BSP | # Positioning of the Retract Thruster #### **Retract Thruster** Ensure enough space for the complete retract unit including room for installation of SRF flange and for future service. Allow 100 mm of clear space around the thruster for moulding of the SRF flange. Ensure that when the thruster is deployed the depth of the propeller exceeds the minimum tunnel depth defined in below table. Installing the thruster below the waterline as outlined is important for two reasons: - 1. Avoid drawing air from the surface which will reduce performance and increase noise levels. - 2. To get as much water pressure as possible to achieve maximum thrust. #### **Bow installation** The thruster must be installed in the center line of the keel and as far forward as possible while following the minimum propeller water depth requirement. The thruster must always be installed so the hatch is opened towards the bow. ### Stern installation To avoid conflict between the thruster and propulsion propellers, trim tabs or rudders the stern installation can be offset from the keel center line. MG_0121 For vessels with sandwich hull construction, additional reinforcement of the area around the SRF flange is required. - 1. To achieve maximum strength and bonding in the area around the installation of the SRF flange remove the inner laminate and core material to expose the outer laminate. Remove enough area for a 100mm (minimum) clearance surrounding the SRF flange. - 2. Reinforce the area by applying several bonding layers to strengthen the hull for the operation of the retract thruster. # **Marking and Trimming of SRF Flange** - 1. Identify the location of the thruster considering space required for installation, operation and future maintenance. - Flip the SRF flange upside down and position it at the identified installation location. Use the internal edge to mark the hull for cutting the thruster hatch. - The SRF flange must sit so the two side rails run flush with the hull. To do so the SRF flange must be trimmed down to match the hull profile curvature. (NB: For guidance or methods to transfer the hull profile to the SRF flange for cutting, consult a naval architect. DO NOT cut the SRF flange length edge.) MG_0117 - 4. Prepare for cutting the hatch door. Drill 4 holes at a 45° angle towards the starboard and port side. (NB: Cutting the hatch from outside the hull the 4 drill hole from the internal marked corners will aid in determining the hatch profile from the outside.) - 5. The hatch opening must be cut at an angle of 45° on three sides and 30° on the side facing the bow. This ensures that forces from water hitting the closed hatch is absorbed by the surrounding hull. (NB: Use a suitable cutting tool able to be set to the desired angle.) Temporarily set up the complete installation to ensure no conflicts during the final operation of the thruster. - 1. Use epoxy filler in the 4 corners of the SRF flange and set it over the hatch. Attach the retract housing retract flange with 4 corner screws to hold. Use polyester or resin to attach the hull hatch to the retract unit. (NB: Ensure correct orientation for the thruster to open the hatch facing the direction of water flow. Remember attachment is for temporary checking of thruster operation only.) - 2. Temporarily connect DC cables (*NB: Refer to the label on actuators for correct voltage*) to the cables on the terminals on the controller. Set switch no. 4 on the DIP-switch marked "SETTINGS" to ON. Deploy thruster and remove the red distance part located above the tunnel. - 3. Press "DOWN" to extend the tunnel and check the hatch opens fully without touching the hull. If the hatch is obstructed by the hull in the front, lift the aft end of the SRF flange maintaining the reference height in front until the hatch clears the hull when opened. - 4. Press "UP" to retract the tunnel. Ensure when the hatch is closed extra pressure is on the contact surface between the hatch and the hull only. If the hatch is not closing with pressure on the contact surfaces the entire SRF flange must be raised. #### **IMPORTANT** The hatch contact edges and the hull contact edges MUST work as the mechanical end stop. During cruising, slamming forces from the water must be absorbed by these areas, not the thruster. Accidental activation of the retract mechanism can cause serious injury due to the high-pressure force used for moving the hatch. IF operating the hatch during any work/ maintenance around or inside the retract hatch, USE CAUTION. After all, pre-checks are completed the retract system can be installed. ! Please refer to the graphic for special considerations relating to your model! To increase the space between the hatch and the hull the entire SRF flange and motor must be raised at the stern end. - 1. With the hatch in the open position raise the stern end of the SRF flange and motor until the appropriate clearance is achieved. (NB: continue to raise the stern height until this is obtained.) - 2. Use a wedge to keep the thruster stable. - 3. Open and close the hatch to ensure: - Clearance between the hull and hatch when the thruster is open - Hatch closes flush with the hull with full contact between hatch and hull. - 4. Record the height and keep the wedges in place and secure the position of the SRF flange with epoxy filler in the corners. SH 240 & SH 320 # **SRF Flange Installation** Start the laminating with a strong attachment point in each corner between the hull and the outside of the lower unit. Use epoxy and fibreglass cutting or similar, which laminating material is the boat builders responsibility. - 1. Before grinding of hull and SRF flange, precautions must be taken against grinding dust inside the boat. Surfaces to be moulded/ bonded must be ground to remove coating and material to achieve sufficient adhesion. - 2. Apply epoxy filler or equivalent on bottom edges of SRF flange or on the hull for bonding between connection surfaces. Ensure the filler is compatible with hull materials. - 3. Place the SRF flange into position ensuring the correct orientation. If there are gaps between SRF and hull, fill with extra epoxy filler or equivalent. Grind and smooth the surfaces after curing time. - 4. Laminate the inside and outside of the SRF flange to the hull by applying several layers of fibreglass and ensure that the resin and fibreglass is compatible with hull materials. - 5. After curing time, smooth all moulded surfaces and apply coating. Apply putty before coating if necessary. Once the coating has cured the retract housing can be installed. ! Please refer to the graphic for special considerations relating to your model! - Apply MS Polymer or equivalent on SRF flange top surface to seal and avoid water leakage. (NB: Ensure that glue is compatible with SRF and thruster case materials.) - 2. Place the upper thruster Housing down on the SRF flange. - 3. Insert and fasten bolts. Start with the 4 corner bolts followed by the remaining to required torque. ### **Hatch Installation** #### ! Please refer to the graphic for special considerations relating to your model! - 1. Fit pin bolts to the lower tunnel rods. The ends of the bolts must be sharp to create marks in the hatch. The pin bolts must be at the correct height so the hatch will fit in its inner position. - 2. Place hatch in its inner position, then press or tap with a hammer to create punch marks inside of the hatch. - 3. Drill 4 marked holes and countersink the outer hull side. (NB: drill holes vertical to the hatch surface.) - 4. Temporary fit the hatch to the tunnel rings. Ensure the bolts do NOT conflict with the propeller tunnel. (NB: Bolts can be cut, depending on hatch thickness.) - 5. Apply a layer of aluminium or duct tape on hatch opening edges on the hull. Apply Epoxy filler or equivalent to hatch edges to create a perfect seal connection between hatch and hull. - 6. Operate the thruster to "IN" position. Smooth out the filler and add more if needed. After curing time, grind and smooth the surface. - 7. Unscrew and remove hatch to smooth off excessive material before coating the hatch. - 8. Apply epoxy glue or similar on to tunnel rings contact surface, so the hatch will be secured properly. Now re-install hatch in its correct position. Tighten bolts so hatch will fit properly. - 9. Apply coating inside and outside of the hatch and on the hull. ### ! Please refer to the graphic for special considerations relating to your model! - 1. Install the motor onto the motor bracket ensuring both the couplings and the drive shafts have locked together. The motor must be installed with the solenoid facing the control box. (NB: depending on your coupling you may need to wiggle the motor into place. Ensure the connection couplings are engaging correctly. Ensure the motor cable terminals are accessible for electrical installation later.) - 2. Fasten the bolts holding the motor to the motor bracket with the above torque. - 3. Check the drive shafts engage by rotating the propeller. It is required the propeller can rotate via hand power. (NB: Rotating the propellers can be hard because of the gear reduction and the motor.) - 4. Apply the gear leg and propeller with anti-fouling designed for propellers. Do not apply to the propeller drive shaft, the anodes or the end of the gear leg facing the propellers. (NB: The motor must be covered to avoid dust from fabrication/ maintenance operation entering the motor or the solenoids. After fabrication maintenance operations have ceased the cover must be removed before operating the thruster.) Follow the defined hose specifications to connect hydraulic hoses to the motor. | Motor type | Port A/B | Drain Port | |------------|----------------------|------------| | G16 | 22L, Metric DIN 2353 | 1/4" BSP | | G19 | 22L, Metric DIN 2353 | 1/4" BSP | | G23 | 22L, Metric DIN 2353 | 1/4" BSP | ! Please refer to the graphic for special considerations relating to your model! - 1. Install the oil container above the waterline by at least 20% of the distance from the waterline to the centre of the tunnel. This ensures enough overpressure for the oil in the gear leg. - 2. Install the oil tube from the oil container to the feed nipple on the motor bracket. Fasten both the tube clamp screws. (NB: Ensure the oil tube has no loops and forms an airlock to stop the oil flow. Ensure the oil tube angle is sufficient to allow oil to flow freely into the gear leg.) - 3. Fill the oil container with the same gear oil used in the gear leg. The oil container works as an indicator to ensure oil is in the gear leg at all times. (NB: Fill and drain the gear leg simultaneously while replacing the oil to ensure the system is never empty.) SH 240 & SH 320 # Wiring Diagram Hydraulic Retract Thruster The Top wiring diagram is for a single bow or stern thruster system The top and bottom wiring diagram is for a dual thruster system, for example a bow and stern installation. # S-Link System Description S-Link is a CAN-based control system used for communication between Sleipner products installed on a vessel. The system uses BACKBONE Cables as a common power and communication bus with separate SPUR Cables to each connected unit. Only one S-Link POWER cable shall be connected to the BACKBONE Cable. Units with low power consumption are powered directly from the S-Link bus. ### Main advantages of S-Link system: - Compact and waterproof plugs. - BACKBONE and SPUR Cables have different colour coding and keying to ensure correct and easy installation. BACKBONE Cables have blue connectors and SPUR Cables have green connectors. - Different cable lengths and BACKBONE Extenders make the system scalable and flexible to install. #### Installation of S-Link cables: Select appropriate cables to keep the length of BACKBONE- and SPUR Cables to a minimum. In case of planned installation with total BACKBONE Cable length exceeding 100 meters please consult your local distributor. The S-Link cables should be properly fastened when installed to avoid sharp bend radius, cable chafing and undesired strain on connectors. Locking mechanism on connectors must be fully closed. To ensure long lifetime, cables, T-Connectors and Extenders should not be located so that they are permanently immersed in water or other fluids. It is also recommended to install cables such that water and condensation do not run along the cables and into the connectors. The POWER Cable should ideally be connected around the middle of the BACKBONE bus to ensure an equal voltage drop at each end of the BACKBONE Cable. The yellow and black wire in the POWER Cable shall be connected to GND and the red wire connected to +12VDC or +24VDC. To reduce the risk of interference, avoid routing the S-Link cables close to equipment such as radio transmitters, antennas or high voltage cables. The backbone must be terminated at each end with the END Terminator. SPUR cables can be left unterminated to prepare for the installation of future additional equipment. In such cases, ensure to protect open connectors from water and moisture to avoid corrosion in the connectors. #### **BACKBONE Cable** Forms the communication and power bus throughout a vessel. Available in different standard lengths. *Green ends #### **SPUR Cable** Used to connect S-Link compliant products to the backbone cable. One SPUR Cable must be used for each connected component, with no exceptions. Recommended to be as short as practically possible. Available in different standard lengths. *Blue ends #### **T-Connector** Used for connection of SPUR or POWER Cable to the BACKBONE Cable, One T-Connector for each connected cable. #### **BACKBONE Extender** Connects two BACKBONE Cables to extend the length. *Green ends Stern Thruster # **POWER Cable** Required in all installations for connection of BACKBONE Cable to a power supply and should be protected with a 2A fuse. #### **END Terminator** Must be one at each end of the BACKBONE bus. MG 0159 # 4-Port T-Connector The 4-PORT T-connector allows multiple SPUR Cables to be connected. The 4-PORT T-connector comes with two sealing caps to protect unused ports. #### S-Link installation example Control Panel Control Panel 4 Port T-Connector Backhone Extende T-Connecto End I Backbone **Backhone** End Terminator S-Link **Automatic Power Supply** Black Main switch Yellow == 12/24V Spui Red Spur Switch Optional Fuse 2A **Bow Thruster** #### TMPORTANT Before the thruster motor is operated, check the drive shaft alignment is completely straight when it reaches the end position form the control panel operation: - 1) Connect power to thruster and S-link system. - 2) Sett DIP-switch on the controller to 0000. - 3) Turn on the panel. (The drive shaft deploys.) - 4) The actuator lever arm is set to alignment marking on the nut - 5) If marks align, turn panel off. Drive shaft retracts. - 6) If the marks do not align, proceed to calibrate drive shaft. # Calibrate drive shaft alignment MC_0069 #### (NB: The drive shaft is correctly aligned when manufactured) - 1) With dip-switches select 'Service Mode'. - 2) Align the arrow on the actuator arm with the calibration mark, using the UP/DOWN buttons. - 3) With dip-switches select 'Sensor Calibration Mode'. - 4) Press and hold both UP and DOWN buttons until STATUS LED light up green. #### (NB: If FAULT LED light-up red, then the calibration is out of position (wrong align mark). 5) With dip-switches select 'Operation Mode', thruster retracts. # **Actuator Configuration** MC_0069 Dip-switch number 1 & 2 configures the actuator(s). No.1 set to OFF when the retract has two actuators. No.1 set to ON when the retract only has one actuator. No.2 set to OFF when the retract does not have P8 type actuator(s). No.2 set to ON when the retract has the P8 type actuator(s). If dip-switch no.2 is set to ON and the actuator gives a rattling noise when the door closes, then there probably is not P8 actuator(s) and dip-switch no.2 needs to be set to OFF. The actuator is a P8 type: - -If the actuator has a plastic cap at the back where you can adjust the actuator manually. - -If it is marked with a sticker with P8 - -If the manufacturer label says P8 # **LED Indication** MC_0069 ### Continuous red light: Motor over-temp, Controller over-temp, Controller no communication, Motor relay failure, Low battery voltage, Position sensor failure, No power to actuators, Retractable unit failure, Temp sensor open circuit. ### Flashing red light: Red light fast blinking: Dip-switch in an invalid position. Red light short flash every 2 seconds: Shaft not calibrated, or shaft calibrated out of range. # Continuous green light: Normal mode, Service mode (actuators operated by UP/DOWN buttons). Re-calibrated "down"-position. # Flashing green light: No S-Link communication. For **Control Panel** installation please refer to the Installation Guide accompanying the control panel to be installed. # **Service and Support** MC 0024 Find your local professional dealer from our certified worldwide network for expert service and support. visit our website www.sleipnergroup.com/support # **Product Spare Parts and Additional Resources** MC 0024 For additional supporting documentation, we advise you to visit our website www.sleipnergroup.com and find your Sleipner product. # **Warranty statement** MC_0024 - Sleipner Motor AS (The "Warrantor") warrants that the equipment (parts, materials, and embedded software of products) manufactured by the Warrantor is free from defects in workmanship and materials for purpose for which the equipment is intended and under normal use and maintenance service (the "Warranty"). - 2. This Warranty is in effect for two years (Leisure Use) or one year (Commercial and other Non-leisure Use) from the date of delivery/purchase by the end user, with the following exceptions; - (a) For demonstration vessels, or vessels kept on the water, the dealer is considered as the end user from 6 months after their launch of the vessel; - (b) The warranty period starts no later than 18 months after the first launch of the vessel. - Please note that the boat manufacturer and dealer must pay particular attention to correct maintenance and service both by the products manuals as well as general good practice for the location the boat is kept in the period the boat is in their care. In cases where the 6 and 18 months grace periods for boat builders and dealers are passed, it is possible to obtain a full warranty upon inspection and approval of the warrantor or such representative. - 3. Certain parts, classified as wearable or service parts, are not covered by the warranty. A failure to follow the required maintenance and service work as described in the product manual render all warranty on parts or components directly or indirectly affected by this void. Please also note that for some parts, time is also a factor separately from actual operational hours. - 4. This Warranty is transferable and covers the equipment for the specified warranty period. - 5. The warranty does not apply to defects or damages caused by faulty installation or hook-up, abuse or misuse of the equipment including exposure to excessive heat, salt or fresh water spray, or water immersion except for equipment specifically designed as waterproof. - 6. In case the equipment seems to be defective, the warranty holder (the "Claimant") must do the following to make a claim: (a) Contact the dealer or service centre where the equipment was purchased and make the claim. Alternatively, the Claimant can make the claim to a dealer or service centre found at www.sleipnergroup.com. The Claimant must present a detailed written statement of the nature and circumstances of the defect, to the best of the Claimant's knowledge, including product identification and serial nbr., the date and place of purchase and the name and address of the installer. Proof of purchase date should be included with the claim, to verify that the warranty period has not expired: - (b) Make the equipment available for troubleshooting and repair, with direct and workable access, including dismantling of furnishings or similar, if any, either at the premises of the Warrantor or an authorised service representative approved by the Warrantor. Equipment can only be returned to the Warrantor or an authorised service representative for repair following a pre-approval by the Warrantor's Help Desk and if so, with the Return Authorisation Number visible postage/shipping prepaid and at the expense of the Claimant. - 7. Examination and handling of the warranty claim: - (a) If upon the Warrantor's or authorised service Representative's examination, the defect is determined to result from defective material or workmanship in the warranty period, the equipment will be repaired or replaced at the Warrantor's option without charge, and returned to the Purchaser at the Warrantor's expense. If, on the other hand, the claim is determined to result from circumstances such as described in section 4 above or a result of wear and tear exceeding that for which the equipment is intended (e.g. commercial use of equipment intended for leisure use), the costs for the troubleshooting and repair shall be borne by the Claimant; - (b) No refund of the purchase price will be granted to the Claimant, unless the Warrantor is unable to remedy the defect after having a reasonable number of opportunities to do so. In the event that attempts to remedy the defect have failed, the Claimant may claim a refund of the purchase price, provided that the Claimant submits a statement in writing from a professional boating equipment supplier that the installation instructions of the Installation and Operation Manual have been complied with and that the defect remains. - 8. Warranty service shall be performed only by the Warrantor, or an authorised service representative, and any attempt to remedy the defect by anyone else shall render this warranty void. - 9. No other warranty is given beyond those described above, implied or otherwise, including any implied warranty of merchantability, fitness for a particular purpose other than the purpose for which the equipment is intended, and any other obligations on the part of the Warrantor or its employees and representatives. - 10. There shall be no responsibility or liability whatsoever on the part of the Warrantor or its employees and representatives based on this Warranty for injury to any person or persons, or damage to property, loss of income or profit, or any other incidental, consequential or resulting damage or cost claimed to have been incurred through the use or sale of the equipment, including any possible failure or malfunction of the equipment or damages arising from collision with other vessels or objects. - 11. This warranty gives you specific legal rights, and you may also have other rights which vary from country to country. **Patents** MC_0024 At Sleipner we continually reinvest to develop and offer the latest technology in marine advancements. To see the many unique designs we have patented visit our website www.sleipnergroup.com/patents | Notes | MC_0037 | |-------|---------| | | | | | | | | | |
 |
*************************************** | |------|---| | | | | | | | |
 | |
 | | | |
 | |
 |
 | | |
 | | |
 | | | | | | | | |
 | |
 |
 | | |
 | |
 |
 | |
 |
 | | |
 | | | | | | | | |
 | |
 |
 | | | | |
 |
 | |
 |
 | | |
 | | | | | | | | |
 | |
 |
 | | |
 | |
 |
 | | |
 | |
 |
 | | | | | |
 | | |
 | | |
 | | •• | |------| | •• | | •• | •• | | •• | | •• | | | |
 | | •• | •• | | •• | | •• | | | | | | | | | | | © Sleipner Group, All rights reserved The information given in the document was right at the time it was published. However, Sleipner Group cannot accept liability for any inaccuracies or omissions it may contain. Continuous product improvement may change the product specifications without notice. Therefore, Sleipner Group cannot accept liability for any possible differences between product and document. Learn more about our products at www.sleipnergroup.com ### **SLEIPNER GROUP** P.O. Box 519 N-1612 Fredrikstad Norway www.sleipnergroup.com